WARNING: This documentation is for an old version of mithril! Please see the current docs for more accurate info.

m.deferred

This is a low-level method in Mithril. It's a modified version of the Thenable API.

A deferred is an asynchrony monad. It exposes a promise property which can bind callbacks to build a computation tree.

The deferred object can then apply a value by calling either resolve or reject, which then dispatches the value to be processed to the computation tree.

Each computation function takes a value as a parameter and is expected to return another value, which in turns is forwarded along to the next computation function (or functions) in the tree.

The deferred object returned by m.deferred has two methods: resolve and reject, and one property called promise. The methods can be called to dispatch a value to the promise tree. The promise property is the root of the promise tree. It has a method then which takes a successCallback and a errorCallback callbacks. Calling the then method attaches the computations represented by successCallback and errorCallback to the promise, which will be called when either resolve or reject is called. The then method returns a child promise, which, itself, can have more child promises, recursively.

The promise object is actually a function - specifically, it's an m.prop getter-setter, which gets populated with the value returned by successCallback if the promise is resolved successfully.

Note that Mithril promises are not automatically integrated to its automatic redrawing system. If you wish to use third party asynchronous libraries (for example, jQuery.ajax), you should also consider using m.startComputation / m.endComputation if you want views to redraw after requests complete.


Usage

//standalone usage
var greetAsync = function() {
    var deferred = m.deferred();
    setTimeout(function() {
        deferred.resolve("hello");
    }, 1000);
    return deferred.promise;
};

greetAsync()
    .then(function(value) {return value + " world"})
    .then(function(value) {console.log(value)}); //logs "hello world" after 1 second

Retrieving a value via the getter-setter API

//asynchronous service
var greetAsync = function() {
    var deferred = m.deferred();
    setTimeout(function() {
        deferred.resolve("hello");
    }, 1000);
    return deferred.promise;
};

//asynchronous consumer
var greeting = greetAsync()
var processed = greeting.then(function(value) {return value + " world"})

console.log(greeting()) // undefined - because `deferred.resolve` has not been called yet

setTimeout(function() {
    //now `deferred.resolve` has been called
    console.log(greeting()) // "hello"
    console.log(processed()) // "hello world"
}, 2000)

Integrating to the Mithril redrawing system

//asynchronous service
var greetAsync = function() {
    m.startComputation();

    var deferred = m.deferred();
    setTimeout(function() {
        deferred.resolve("hello");

        m.endComputation();
    }, 1000);
    return deferred.promise;
};

Differences from Promises/A+

For the most part, Mithril promises behave as you'd expect a Promise/A+ promise to behave, but has one difference:
Mithril promises atempt to execute synchronously if possible.

To illustrate the difference between Mithril and A+ promises, consider the code below:

var deferred = m.deferred()

deferred.promise.then(function() {
    console.log(1)
})

deferred.resolve("value")

console.log(2)

In the example above, A+ promises are required to log 2 before logging 1, whereas Mithril logs 1 before 2. Typically resolve/reject are called asynchronously after the then method is called, so normally this difference does not matter.


Signature

How to read signatures

Deferred deferred()

where:
    Deferred :: Object { Promise promise, void resolve(any value), void reject(any value) }
    Promise :: GetterSetter { Promise then(any successCallback(any value), any errorCallback(any value)) }
    GetterSetter :: any getterSetter([any value])
  • GetterSetter { Promise then([any successCallback(any value) [, any errorCallback(any value)]]) } promise

    A promise has a method called then which takes two computation callbacks as parameters.

    The then method returns another promise whose computations (if any) receive their inputs from the parent promise's computation.

    A promise is also a getter-setter (see m.prop). After a call to either resolve or reject, it holds the result of the parent's computation (or the resolve/reject value, if the promise has no parent promises)

    • Promise then([any successCallback(any value) [, any errorCallback(any value)]])

      This method accepts two callbacks which process a value passed to the resolve and reject methods, respectively, and pass the processed value to the returned promise

      • any successCallback(any value) (optional)

        The successCallback is called if resolve is called in the root deferred.

        The default value (if this parameter is falsy) is the identity function function(value) {return value}

        If this function returns undefined, then it passes the value argument to the next step in the thennable queue, if any

      • any errorCallback(any value) (optional)

        The errorCallback is called if reject is called in the root deferred.

        The default value (if this parameter is falsy) is the identity function function(value) {return value}

        If this function returns undefined, then it passes the value argument to the next step in the thennable queue, if any

      • returns Promise promise

  • void resolve(any value)

    This method passes a value to the successCallback of the deferred object's child promise

  • void reject(any value)

    This method passes a value to the errorCallback of the deferred object's child promise